Time travel: A talk you cannot miss

Samuel Adrian Antz

December 28, 2024

Minkowski diagram

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへで

Light cones

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - 20ペ

Samuel Adrian Antz

Time in black holes

Samuel Adrian Antz

Closed curve

Samuel Adrian Antz

Sending information instantaneously

Faster than light (FTL) communication \Rightarrow Sending information back in time

Faster than light (FTL) travel \Rightarrow Sending matter back in time

Pick two:

Relativity Causality FTL

イロト イポト イヨト イヨト

3

Samuel Adrian Antz

Moving system

Samuel Adrian Antz

Transformation

Samuel Adrian Antz

イロン イ団 と イヨン イヨン

2

Samuel Adrian Antz

Sending messages back

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

Samuel Adrian Antz

Manhattan metric

Lorentzian universe

In our universe, distance is calculated using:

$$s^2 = c^2 t^2 - x^2 - y^2 - z^2$$

$$s^2 \ge 0$$
 yields $c^2t^2 \ge x^2 + y^2 + z^2$
or $ct \ge r$ with traveled distance $r^2 = x^2 + y^2 + z^2$
or $c \ge v$ with traveled velocity $v = r/t$.

Riemannian universe

In a different universe, distance is calculated using:

$$s^2 = c^2 t^2 + x^2 + y^2 + z^2$$

 $s^2 \ge 0$ is always fulfilled.

Time travel: A talk you cannot miss

Samuel Adrian Antz

Worldlines

World lines of constant acceleration

2

Orthogonal

Samuel Adrian Antz

The Arrows of Time

A HAYAKAWA SCIENCE FICTION SERIES

Samuel Adrian Antz

Thanks for your attention! :-)

Questions?

・日・ ・ヨ・ ・ヨ・

3